Time Scale and Adjusted Survival Curves for Marginal Structural Cox Models
نویسندگان
چکیده
منابع مشابه
Time scale and adjusted survival curves for marginal structural cox models.
Typical applications of marginal structural time-to-event (e.g., Cox) models have used time on study as the time scale. Here, the authors illustrate use of time on treatment as an alternative time scale. In addition, a method is provided for estimating Kaplan-Meier-type survival curves for marginal structural models. For illustration, the authors estimate the total effect of highly active antir...
متن کاملAdjusted Survival Curves
Suppose we want to investigate to what extent some factor influences survival, as an example we might compare the experience of diabetic patients who are using metformin versus those on injected insulin as their primary treatment modality. There is some evidence that metformin has a positive influence, particularly in cancers, but the ascertainment is confounded by the fact that it is a first l...
متن کاملHistory-adjusted marginal structural models for estimating time-varying effect modification.
Much of epidemiology and clinical medicine is focused on estimating the effects of treatments or interventions administered over time. In such settings of longitudinal treatment, time-dependent confounding is often an important source of bias. Marginal structural models (MSMs) are a powerful tool for estimating the causal effect of a treatment using observational data, particularly when time-de...
متن کاملMarginal Structural Cox Models with Case-Cohort Sampling.
A common objective of biomedical cohort studies is assessing the effect of a time-varying treatment or exposure on a survival time. In the presence of time-varying confounders, marginal structural models fit using inverse probability weighting can be employed to obtain a consistent and asymptotically normal estimator of the causal effect of a time-varying treatment. This article considers estim...
متن کاملMarginal Structural Cox Models with Case-Cohort Sampling
A common objective of biomedical cohort studies is assessing the effect of a time-varying treatment or exposure on a survival time. In the presence of time-varying confounders, marginal structural models fit using inverse probability weighting can be employed to obtain a consistent and asymptotically normal estimator of the causal effect of a time-varying treatment. This article considers estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Epidemiology
سال: 2010
ISSN: 0002-9262,1476-6256
DOI: 10.1093/aje/kwp418